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The paper considers new opportunities for desigraabus optoelectronic devices opened by
the use of polarization doping in llI-nitride hedstructures, including distributed polarization
doping (DPD) in graded-composition alloys. The paktion doping is routinely exploited in
HFETs for a long time. In contrast, this concept hat yet been applied to LEDs, laser di-
odes, and solar cells until recently, in spitetefgreat potential advantage — capability of pro-
ducing holes with high concentrations that can née&achieved by conventional impurity
doping.

Basic ideas underlying the concept of polarizamping, including estimates for highest
achievable hole concentrations in various mateaats analysis of ways for intentional con-
trol of the doping profiles in device structures discussed in the paper. Recent experiments
supporting the concept of polarization doping, destiating feasibility of using DPD in op-
toelectronic devices, and providing essential datéhe carrier properties are reviewed in the
paper.

Using simulations, we apply the concept of DPD itwl fpromising ways for solution of a
number of practically important problems like mprovement op-doping in deep UV LED
structures, (ii) development of ohmpetype contact to AlGaN alloys with high aluminum
content, and (iii) development of llI-nitride turinenctions capable of forward bias operation,
which is vital for the tandem solar cell fabricaticA parabolic variation of the AlGaN alloy
composition in a deep-UV SQW LED structure is fodagrovide a rather uniform hole dis-
tribution across th@-contact layer with the bulk concentration as high~4-8x18 cm®. In

this case, the contact layer was assumed to hateationally doped with impurities at all. At
the composition gradients quite reasonable fronptiaetical point of view, the calculated re-
sistances of the ohmic contacts formed to gradedposition AlGaN alloys have appeared to
be much lower compared to the resistances of cdiovexh Ni-Au contacts t@-GaN:Mg. In
addition, the DPD-mediated ohmic contacts exhibhicimweaker temperature dependence of
their resistances. Various tunnel junction desigiilzing the polarization doping are consid-
ered by simulations. We suggest an effeciv@aN/InGaNh-GaN tunnel junction capable of
conducting high currents (up to ~1-4 kAfnunder both forward and reverse biases. Such
junctions can be used to connect in series theadasdn the lll-nitride tandem solar cells and
to form alternative low-resistance ohmic contacpiayers of UV LEDs. These and other
relevant simulation results are discussed in detailr paper.
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Fig.1 Schematic composition profile (top) and
simulated band diagram and carrier concen-

trations (bottom) in a prototype of GaN-free

UV LED with polarization-dopedp-contact

layer. Here, grey shadow indicates the energy

gap, while lines are the electron and hole

concentrations. Notice the uniformly distrib-

uted hole density in the graded-composition

AlGaN to be close to 5x1®cm?, which can

never be obtained by impurity doping.
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Fig.2 Distributed polarization charge density in gradedaposition alloys and calculatpecontact resis-

tance to AlGaN materials as a function of compositjradient (left). Comparison of the contact resis

tance dependences on temperature for Mg-doped Galddarization-doped AlGaN (right).
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Fig.3 Band diagram and tunneling pathways ip-@aN/InGaNh-GaN junction contributing to the tun-

neling current (left). Simulated current-voltageadcteristic of thg-GaN/InGaNh-GaN tunnel junction

demonstrating feasibility of the forward-bias opienra necessary for IlI-nitride tandem solar cetiglkt).



