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2 Polarization doping for High-
Electron Mobility Transistors
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A. Bykhovsky et al., J. Appl. Phys. 74 (1993) 6734  — strong piezoeffect
F. Bernardini et al., Phys. Rev. B 56 (1997) R10024 — spontaneous polarization

at the moment, polarization doping is routinely exploiting in AlGaN/GaN
and AIInN/GaN HEMTSs, providing the sheet electron concentration in the
range of ~0.8-2.6x10!3 cm2



3 Polarization impact on LED and
laser diode performance
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4 Fundamentals of distributed
olarization doping (DPD)
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> How to attain high hole

—m concentration by DPD?
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simulations of a UV laser diode operation have demonstrated a new way for
achieving high hole concentration in graded-composition III-nitride alloys,
which is quite promising for design of advanced optoelectronic devices

Simulation: K. A. Bulashevich et al., Proc. 3 " APWS, Jeonju (2007) 192




Experimental confirmation

— of the p-type DPD concept
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Simulation by SILENSe 5.1 (http://www.str-soft.com/products/SiLENSe)
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8 Feasibility of polarization-doped

— P-N junction
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Experiment:  S. Li et al., Phys. Stat. Solidi (c) 7/8 (2011) 2182




J Feasibility of polarization-doped
UV LED structures
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Experiment: S. D. Carnevale et al.,
Nanoletters 12 (2012) 915




10 Low -resistance p-type Ohmic contact
[ based on polarization doping
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1 Feasibility of Ohmic contacts formed
to graded-composition AlGaN
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FIG. 1. Linear IV curves demnstmlhg ohmic contact for n- and P—lypf_' FI(3. 4. CI.I]TE“[—Vﬁl'IﬂgC measurement for {a) regu[;]_r dﬂ.]}f_ld GaMN P11 j'|_|'|'[c_
graded AlGaN layer. D1 is the IV curve for polarization induced n-type dop- tion, (b} graded Aly ;GayoN pn-junction, and (¢) Schottky diode. The mesa
ing of a 10% graded Al.Ga; N (x =0.1} film; D2 is the IV curve for polar- is Si and Mg doped GaN pn junction in a device (a); the mesa is graded
ization induced p-type doping of a 10% graded Al,Ga;, N (x=0.1) film. Aly Gage N pn-junction in device (b); the mesa is undoped GaN film in de-
The RTP for n-type was at 800 °C for 30 s and 750°C for 20 s for p-type. vice (¢).
linear I-V characteristics is diode characteristics of the DPD AlGaN
demonstrated for Ohmic contact p-n junction, impurity-doped GaN p-n
to acceptor-free DPD AlGaN junction, and GaN Schottky barrier

Experiment:  S. Li et al., Appl. Phys. Lett. 1018 (2012) 122103
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Conclusions
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+ simulations show that the use of distributed polarization doping (DPD)
provides new opportunities for design of advance optoelectronic devices
like LEDs, laser diodes, and solar cells

4+ first experimental studies support the DPD concept in general but
they do not utilize in full measure all its advantages, being carried out
under conditions far from optimal ones

4+ a prototype of deep-UV LED structure is proposed and examined
theoretically; it is found to be quite promising for improving the p-type
conductivity in the heterostructure and forming low-resistance p-contacts
to the LED

4+ implementation of the DPD concept in the device fabrication
technology will require special approaches for precise control of the
composition profile and strain relaxation in the device structures during
their epitaxial growth



