SimuLED

LED epi-chip Simulation Software (SiLENSe/SpeCLED/RATRO)

SimuLED 구성

1. SiLENSe(LED heterostructure 최적화)
 -Material properties editor (SiLENSe 기본 물성 편집)
 -project input file(".sls"), output file(".sls")
 ·QW6_650nm_LED_T_320
 ·QW6_650nm_LED_T_32

-project input file(".dvx"). Output file("(40)_rtr.cgs")

🗱 Planar2ITO(40)_rtr

SimuLED 개념도

1. SILENSe

- O. Material Properties(ProEdit)
 -SiLENSe에서 사용되는 물성 정보의 확인 및 편집기
 -SiLENSe 시작하기 전 Default parameter 물성 확인
- 1. Input parameters 1-1 degree of relaxation
 - 1-2 layer profile
 - 1-3 global parameter
- 2. Output results
 2-1 current band diagram
 2-2 I-V curve and wavelength
- 3. Export Data into SpeCLED 3-1 to load "J(bias), IQE(J), Spectra(bias)" on the active region of SpeCLED

O. Material properties

실퓨터 ▶ 5	리컬 디스크	(C:) ▶ P	rogram Files (x86)	 STR Inc 	► SILE	NSe 5.2	
열기 라이	이브러리에	포함 ▼	공유 대상 ▼	굽기	호환성	파일	
	^ 이름		^		수정	한 날짜	15
	🧀 si	lense	SiLENSe에	서 사용되	201	Ecto D	3 3
	🗿 si	lense		/	201	1-12-13	Q 3
	🚳 S	lcLib.dll			201	1-01-29	<u>Q</u> 3
	S S	tr_Config	_SL.cfg		201	1-12-02	27
:	📰 👩 S	TR_WebSi	ite		2009	9-08-20	23
	🖳 🔛 S	TREndUse	erLicense		201	1-04-27	<u>Q</u> 3
	🚮 u	nins000			201	1-09-22	<u>Q</u> 3
	1 3 u	nins000	~		201	1-09-22	<u>Q</u> 3
	🛛 🚺 w	urtzite			2010	0-11-19	<u>Q</u> 3
	🗋 w	urtzite.m	ats		2009	9-08-19	<u> २</u> ३
(C:)	z zi	inc_blend	e		2009	9-11-15	2 ड
(D:)	👻 🗋 zi	inc_blend	e.mats		2009	9-11-15	Q3
Help terials	1.00 : C:\Program	Files (x86)₩STR	Inc#SiLENSe 5.24 wurtzite.mat				
Name	Lune	Number		Al	N, InN, G	àaN	
	Nitride (III-N)	3	💠 Add property 💻 Dele	te property			
	Sauce (in O)	5	Properties :				
			Electronic properties Impurities	Optical properties Pie	zoelectric prop	perties	
			Name	Unit	AIN InN	AIN GaN	InN GaN
			Energy gap	eV	-4.5	া	-1.2
			Crystal-field splitting	meV	0	0	U

Spin-orbital splitting

meV

0

0

0

ram Files (x86)	► STR Inc ► Sil	LENSe 5.2	 Properties 	Editor	
리에 포함 ▼	공유 대상 ▼	굽기	새 폴더		
^ 0]-	름	^		수정한 날	날짜
	BlankMaterial			2008-12 2008-08	-02 오후 -13 오후
	PropertiesEditor	DefaultPa	rameters	2010-12	-07 오후
= 🔁	PropertiesEditor	UserManu	al	2010-12	-07 오후

 SiLENSe에서 default로 사용되는 물성 값을 확인/ 편집 시 필요함
 InGaN QW이 사용된 LED구조에서 wavelength의 shift가 필요시

InGaN bowing parameter를 변경할 수 있음, 범위 (-1~-3.4eV, default -1.2eV)

1-1. Degree of relaxation

1-2. Layer profile

각 layer 물성 정의 시 grade 줄 수 있음 -composition -dopant -mobility

- Composition : Fraction	Left point	Right point	Middle point
• AIN	0	ľ i i i	
• InN	0.13		
• GaN	0.87		
			
Dopant concentration	-		
Type Donors (cm^-3)	Left point	Right point	Middle point
Acceptors (cm ⁻³)	1.000E+18	1.000E+19	
Mobility :	<u> </u>		
Type Electrons (cm^2/V/	Left point s) 100	Right point	Middle point
• Holes (cm^2/V/s)	10		

1-3. Global parameter

	ilobal parameters	Materials r	properties F	esults	Spectrum	Laser parameters	Waveguide
ysical and Solv	er parameters		766			9	· ·
			1				
				Phys	ical par	ameters	
			Temperatu	re (K)			310
			Quantum F	Potential	Model		Yes
			Electron G	uantum	Potential C	orrection Factor	0.7
			Hole Quar	tum Pote	ential Corre	ection Factor	1
			Temperatu	re Facto	r for B		-1.5
			Temperatu	re Facto	r for Cn		0
121			Temperatu	re Facto	r for Cp		0
		La	iyer			[0, 10], 2~3 default:0.7/	3,
				Mains	olver pa	rameters	
the number o	f computation	mesh)	Intervals p	er layer			100
			Maximum	number o	fiterations	•	2000
			S	pectrur	n solver	parameters	
			Mesh step	(nm)		<u>.</u>	0.05
			Wavefunc	tion dam	ning in a b	arrier	100
			HUTCIGHC	uon uam	ping in a u		
			Maximum	number o	f levels in	a QW	100
			Maximum e	number o nergy le	flevels in /el (eV)	aQ₩	100

2-1. Current band diagram

F	File Heterostructure Material properties Run Export Tools Window Help																	
-	p→ List of Results																	
	Edit Show Run Export																	
	Ð	M D Y Q R A N R II A Proof to Specific																
		N	Bias	J]	Jrad	Jnrad	JSRH	J Auger	Jn	Jp	Jn right	Jp left	IQE	IQE QW	lnj eff	m	Peak WL	
1		1	2.7	0.1728	0.1219	0.0510	0.0478	0.0031	0.1728	0.1728	6.006E-07	1.105E-09	0.7051	0.7051	0.9944			-
		2	2.8	1.3165	0.9801	0.3364	0.2831	0.0532	1.3165	1.3165	8.550E-06	1.243E-08	0.7445	0.7445	0.9938	1.9050		
		3	2.9	6.276	4.6579	1.618	1.1188	0.4992	6.276	6.2759	8.195E-05	8.274E-08	0.7422	0.7422	0.9909	2.4768		
		4	3	21.813	15.473	6.339	3.4409	2.8981	21.813	21.812	0.0006	4.403E-07	0.7094	0.7093	0.9868	3.1050		
		5	3.1	60.793	40.297	20.493	8.7514	11.7388	60.793	60.79	0.0037	2.104E-06	0.6629	0.6627	0.9849	3.7739		
-		6	3.2	145.43	89.213	56,196	19.2191	36.9774	145.43	145.41	0.0217	9.998E-06	0.6134	0.6134	0.9858	4.4348		
		7	3.3	311.68	176.35	135.19	37.9064	97.2885	311.68	311.55	0.1300	5.108E-05	0.5658	0.5657	0.9870	5.0745		
		8	3.4	611.19	318.86	291.48	68.3222	223.1653	611.19	610.35	0.8431	0.0003	0.5217	0.5214	0.9873	5.7440		
		9	3.5	1113.0	535.76	571.08	114.0107	457.0461	1113.0	1107.0	5.7713	0.0015	0.4815	0.4811	0.9836	6.4572		
-	-																🗙 Close	

2-2. I-V curve and Wavelength

File Heterostructure Material properties Run Export Tools Window Help								
Edit	Edit Show Run Export							
1	D	X Q	B	🔝 🏎 💵 ۸ 🖪 Export to SpeCLED				
	N	Bias	J	- I-V characteristic	m Peak WL			
	1	2.7	0.1728	Current density Internal auantum efficiency I-V curve				
	2	2.8	1.3165	Contact resistance parameters :	9050			
	3	2.9	6.276	Device area (cm ²) 0.0021 n-contact resistance (0hm cm ²) 1.000E-06	4768			
	4	3	21.813	Series resistance (Ohm) 1 p-contact resistance (Ohm cm^2) 1.000E-04	1050			
	5	3.1	145 43		4348			
	7	3.3	311.68		0745			
	8	3.4	611.19	2.30070	7440			
	9	3.5	1113.0		4572			
年]			(V) 1.36E+0 3.6E-1 3.6E-1 3.6E-1 Close	X Close			
				Voltage (V)				

INFOLECH

3. Export to SpeCLED

2. SpeCLED

- 2-1. Chip structures available
- 2-2. Layer 위치와 종류
- 2-3. Layer Properties Profile
- 2-4. Computation Vertical mesh
- 2-5. Chip computation mode

2-1. Chip Structures

2-2. layer 위치와 종류

-Layer 위치	√+z		
p-pad(metal with wire bonding)			
p-electrode(multiple metals)			
p-spreading like ITO			
p-blocking(thickness=0, insulator)	n-pad		
p-semiconductor	n-ele	ectrode(multiple metals)	
Active region(thickness=0)	Z=0	n-blocking	
n-semiconductor			
Substrate	-7		

-Layer 물성 정의

Layer	물 성
Semiconductor	Mobility,열전도도,전기전도도,도핑 DOS, Ei, g-factor
Conductor	열전도도/ 전기전도도
Spreading	전기전도도 from sheet R
Insulator	열전도도
Substrate	열전도도/전기전도도
Active region(z=0)	J(bias), IQE(J), spectra(bias)

2-3. Layer Properties profile

- 2-3-1. p-GaN mobility & doping profile
- 2-3-2. n-GaN mobility & doping profile
- 2-3-3. Vertical mesh
- 2-3-4. Layer contact resistance
- 2-3-5. Heat transfer coefficient

2-3-1. mobility&doping

p-GaN profile

Thickness(+z)	h_Mobility(z,T)	Doping(z)
p-GaN2=0.02um	M=10*(300/T)	5e18
p-GaN1=0.18um	M=8*(300/T)	1e19
z=0		

Function tab in mobility(z,T)

If (z>0) and (z<0.18) then h_mob=8*(300/T); If (z>0.18um) then h_mob=10*(300/T); Result=h_mob;

Piecewise tab in doping(z)

2-3-2. mobility&doping

n-GaN profile

Thickness(-z)	E_Mobility(z,T)	Doping(z)
Z=0		
n-GaN1=0.5um	Mob=100*(300/T)	1e19
n-GaN2=3.0um	Mob=120*(300/T)	5e18

Function tab in mobility(z,T)

If (z<0) and (z>-0.5) then e_mob=100*(300/T); If (z<-0.5um) then e_mob=120*(300/T); Result=e_mob;

Piecewise tab in doping(z)

2-3-3. Vertical Mesh

Project Configuration	Vertical Dimensions 4 n-semiconductor(A).um 0.2 mesa depth(M).um 0.7 p-electrode(D).nm 50 n-pad(p).um 1 p-pad(P).um 1 top substrate(E).um 100 bottom substrate(F).um 100 substrate x-extension 1 substrate y-extension 1	
p-semiconductor(NA) 12	substrate y-extension 1	
n-semiconductor(Na) 7	Additional Layers	
top substrate(NE) 2	n-blocking p-blocking	
bottom substrate(NF) 2	n-spreading p-spreading	
p-spreading layer	Modified Active Region	
← Back Next =>	✓ OK X Cancel	

- Computation=Planar grids X vertical mesh
- Vertical mesh 수의 증가는 막대한 계산시간 이 필요함으로 vertical mesh의 증가가 계산 결과에 영향을 미치는 경우에만 사용을 권장
- 시뮬레이션 변수가 p-GaN 또는 n-GaN의 두께가 아닐 경우 p-GaN(3) and n-GaN(5) 를 권장함

2-3-4. p&n 접촉 저항

2-3-5. 열 전달 계수

2-4. Computation mode

Series calculation

Solver setting

Current Solver Settings Output	Current Solver Settings Output
Computation Mode C Single Calculation ⓒ Series Calculation ⓒ Series Calculation for SimuLAMP Total Current Range Min 10 mA Max 350 mA Total Solution Mode Min 10 mA Max 350 mA V=3.005v>I=30mA V=3.005v>I=30mA V=3.005v>I=30mA V=3.005v>I=30mA Voltage Initial Voltage, V 3.2 Voltage Fitting Step, V 0.1 Voltage Variation Step, V 0.05 Min. I=10mA full 3D 계산 I2=30mA>active region only I3=50mA>active region only~	Convergence Limits Active Region Parameters △ J, mA: 1E-3 ∪ Residual Preliminary: 1E-6 ∪ Residual Final: 1E-8 BCGS Solver Parameters © Secant vertical U-Number of Iterations: 200 U-Residual Limit: 1E-2 U-Inertion: 1E-5 U-Relax: 0.9
	Current Spreading Heat Transfer Coupling

3. RATRO

- 3-1. Global parameters
- 3-2. Bulk Properties 정의
- 3-3. Surface Properties 정의

3-1 Global parameters

3-2 Bulk properties

3.3 Surface properties

1. "B"와 같이 n-pad=n-elec. 영역이 같은 경우 n-electrode 정의할 필요 없고, n-pad를 Multiple 선택하여 n-electrode 함께 묘사함

		Surface properties	Explanation	
	D	p-semiconductor	Free surface of p-semiconductor	
	G	p-electrode	Surface covered by p-spreading layer and p-electrode	
no area		p-pad	Surface covered by p-spreading layer and p-electrode and pad	
	Α	n-semiconductor	Free surface of n-semiconductor	
no area		n-electrode	Surface covered by n-electrode only	
	в	n-pad	Surface covered by n-electrode and n-pad	
		substrate bottom surface		
		hetero-structure/substate interface		
		substrate sidewall1		
		substrate sidewall2		
	F	p-spreading layer	Surface covered by p-spreading layer only	
	F	p-spreading-p-blocking layer	Surface covered by p-blocking layer and p-spreading layer and not covered by p-electrode or	
	E	p-blocking layer	Surface covered by p-blocking layer only	
	н	p-pad p-blocking layer	locking layer Surface covered by p-blocking layer, p-spreading layer, p-electrode, and p-pad	
G p-electrode p-blocking layer Surface covered by p-blocking layer, p-spreading layer, an		p-electrode p-blocking layer	Surface covered by p-blocking layer, p-spreading layer, and p-electrode, not covered by p-pad	

-시뮬레이션 순서-

• 1. SiLENSe:

-입력: "Hetetrostructure", "Global parameter",

-계산 모드: Series calculation for SpeCLED -생성 결과 파일: =>"~T_300.sct", "~T_320.sct", "~T_350.sct"

2. SpeCLED: 칩구조 입력

"Active region"탭에서 1번 결과 생성파일 ".sct" 파일 온도 별로 로드

3. RATRO

"Global parameter(Uniformity intensity 선택)"->"Bulk properties"→"Surface properties"→Run 결과: LEE 계산

- 4. SpeCLED "Run"탭에 LEE(user input에 3번 결과 입력) 계산 결과: ~(mA).cgs 파일
- 5. RATRO "intensity distribution from SpeCLED" 모드 선택→4번 .cgs 파일 선택 "Run" 실행-→최종 RATRO 결과 ~(mA)_rtr.cgs 생성

