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Abstract

One-dimensional drift-diffusion model accounting for the unique properties of
group-III nitrides is employed to simulate the carrier transport and radiative/non-
radiative recombination of electrons and holes in light emitting diode heterostruc-
tures. Mixed finite-element method is used for numerical implementation of the
model. The emission spectra are computed via the self-consistent solution of the
Schrodinger-Poisson equations with account of complex valence band structure of
nitride materials. Simulations of a number of single- and multiple-quantum well
blue and ultraviolet light emitting diodes are presented and compared with avail-
able observations. Specific features of the IIl-nitride LED operation are considered
in terms of modelling. Applicability of the drift-diffusion model to analysis of III-
nitride LEDs is proved and still open questions are discussed.
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1 Introduction

Due to direct bandgaps varying in the range of 0.7-6.2 eV, group-III nitrides
— AIN, GaN, and InN — and their ternary alloys have recently become basic
materials for visible and ultra-violet (UV) light emitting devices [1]. The fab-
rication technology and engineering of these semiconductor devices, however,
have currently leaved far behind a detailed understanding of mechanisms in-
volved in their operation. This is largely because of non-ordinary properties of
nitride semiconductors, like a spontaneous electric polarization, a strong piezo-
effect, an extremely low acceptor activation efficiency, and a high dislocation
density inherent in epitaxial materials [2]. In particular, huge polarization-
induced charges accumulated at abrupt interfaces of a device heterostructure
affect dramatically its band diagram. A poor acceptor activation requires spe-
cial approaches to attain a satisfactory efficiency of carrier injection into the
active region of a light emitting diode (LED) or a laser diode (LD). All this, in
combination with a complex multi-layer heterostructure and carrier degener-
ation typical of most LEDs and LDs, hampers an intuitive bandgap engineer-
ing of the devices, normally based on analogies with conventional III-V com-
pounds. Here, numerical simulation may provide a deeper insight into physical
mechanisms underlying the device operation and support optimization of its
heterostructure.

A global simulation of a [TI-nitride LED requires to treat consistently a number
of issues, including (i) non-equilibrium carrier injection into the active region,
electron and hole radiative/non-radiative recombination and light emission,
(ii) current spreading in an LED dice with a complex contact configuration
[3], (iii) light extraction from the dice, (iv) heat removal from the LED het-
erostructure, and (v) some reliability aspects [4]. This paper deals with the
first of the above problems.

An earlier attempt of 1D-modelling of the band diagram and carrier injection
in a blue InGaN/AlGaN LED has been reported in [5]. The authors referred
to an LED structure fabricated by S.Nakamura and co-authors [6] where an
Ing.06Gag.gsN active region was thick enough to provide a complete strain re-
laxation via generation of mismatch dislocations. The drift-diffusion (DD)
model used in [5] was specially adapted to account for such specific features of
wide-bandgap materials as a large range of variation of the majority /minority
carrier concentration and high potential barriers formed at the structure in-
terfaces due to a large difference in the bandgaps of neighboring materials. As
a principal feature of nitride semiconductors, strong spontaneous and piezo-
polarization, had not been recognized at that time, it was not considered in
[5]. More accurate 2D- and 3D-simulations of blue InGaN/GaN LDs and Al-
GaN/GaN UV LEDs have been recently reported in [7,8]. In this studies, the
APSYS and LASTIP packages by Crosslight Software were employed where



the DD transport equations combined with the Shokley-Read non-radiative
recombination model had been implemented. The simulations have revealed
a huge effect of the built-in polarization fields on the band diagrams of the
devices and on the rate of electron and hole radiative recombination in a
quantum-well (QW) active region.

Despite the demonstrated capabilities of simulations to predict general trends
in III-nitride operation, many questions still remain open. First, visible ITI-
nitride LEDs normally contain a single-quantum-well (SQW) or a multiple-
quantum-well (MQW) InGaN active region grown on GaN. As these materials
have a large, ~ 11% , lattice constant mismatch, the QWs cannot be obtained
thick enough without generation of interface defects. Therefore, the thickness
of an InGaN QW ranges normally between 1 and 4 nm. The space-charge re-
gions formed in nitride LEDs are typically as wide as a few tens of nanometers.
Since both the QW thickness and the space-charge region width are compa-
rable with the mean free path of electrons and holes, the applicability of the
DD model for simulating [TI-nitride LED heterostructures is not evident and
requires a special justification. Second, it has been recently found that a dis-
tributed space charge can be formed in a graded-composition nitride alloy due
to polarization effects [9]. Actually, such a space charge may be regarded as
a result of additional doping of a heterostructure. However, a built-in pulling
field arises also in a graded-composition layer, which may favor or hinder the
carrier injection. Thus, the total effect of the graded-composition layers on
the LED operation is not yet understood in detail and requires a special in-
vestigation. Third, a high dislocation density of ~ 108-10'° ¢cm~2 is typically
observed in III-nitride epitaxial layers grown on either sapphire or silicon car-
bide substrates. The dislocations serve as non-radiative recombination centers
considerably lowering the internal quantum efficiency (IQE) of devices (see,
e.g., [10] and references therein). At the moment, the dislocation impact on
the LED efficiency and other characteristics is not examined in detail. And,
the question that is still obscure concerns the role of a tunnelling current fre-
quently observed in InGaN blue and, especially, green LEDs (see, for instance,

[11]).

In this paper, we report on the use of one-dimensional DD model for simulating
the carrier transport and light emission in III-nitride LED heterostructures,
with the focus on the model applicability and its validation. The problems of
numerical solution of the DD equations, originated from specific features of
III-nitride semiconductors, are discussed. Comparison with experimental data
reported for a number of SQW and MQW blue and UV LED structures is
done to validate the model.

There are additional reasons stimulating our interest to a 1D-model of III-
nitride LEDs. From the practical point of view, the most critical character-
istic of any simulation approach is the time necessary to get an engineering



guideline for device structure design or/and its optimization. Being capable
of predicting the principal trends in the device operation, a 1D-model may
have advantages over more accurate 2D- and 3D-models due to a shorter re-
sponse time and an easier implementation of novel physical mechanisms. This
is especially evident for IIl-nitrides having many materials properties known
with an insufficient accuracy, so that the simulation predictability is no longer
limited by the dimensionality of the approach.

The paper is organized as follows. The model description is given in Sec.2.
The numerical approach, its efficiency, and relevant computational problems
are reviewed in Sec.3. Simulation of a number of LED heterostructures and
comparison with available experimental data is considered in Sec.4. In Sec.5,
the results of the study are summarized and still open questions are discussed.

2 Model

An LED heterostructure is considered as a stack of uniform or graded-compo-
sition epitaxial layers coherently grown on an underlying template layer (nor-
mally, a buffer or an n-contact layer) in the direction 2z corresponding to
the hexagonal axis (C-axis) of the wurtzite crystal. Thus, all the layers have
the in-plane lattice constants equal to that of the template layer a, . The
thickness of the template layer is assumed to be much greater than the total
thickness of the rest epilayers and, hence, the bending of the heterostructure
as a whole can be neglected. The misfit strain components in a planar biaxi-
ally stressed layer are ¢, =€, = —(a — ag)/a , €3 = —26,C13/Cs3 , where ¢;
and Cj; are the components of strain and elastic stiffness tensor in the Voigt
notation [12]. The unstrained lattice constant a of an AlyIn,Ga; N alloy
obeys the Vegard rule:

a = zaaN + yamy + (1 — 2 — y)agan

where aaN , amn , and agan are the lattice constants of the binary constituents
of the alloy.

There are two distinct effects of strain on the band diagram of an LED het-
erostructure. First, the tension (compression) decreases (increases) the energy
bandgap. The bandgap variation may be significant: e.g., the difference in the
bandgap of Ing2Gag N under the tensile and compressive strain equal in mag-
nitude to 0.02 approaches ~ 0.5 eV. The strain dependence of the bandgap
is more steep under tension. While the energy of heavy holes depends weakly
on the biaxial strain, a large strain-induced shift of light hole band is ob-
served under tension [13]. Second, a strain generates a strong built-in electric
field in the device structure because of piezoeffect. The only z-component of



the piezoelectric polarization is essential to consider the LED heterostructure
grown along the hexagonal axis of the crystal [14]

C
PP = 2¢, <€13 — 6330—;3;) ;

where e;; are the components of the piezoelectric tensor in the Voigt notation.

Another source of the built-in electric field is the spontaneous polarization that
may exist in polar semiconductors with wurtzite or lower crystal symmetry.
The spontaneous polarization is directed along the C-axis of the crystal and
is assumed to obey the Vegard law in IIl-nitride alloys

P® = xPi +yPox + (1 — 2 — y) Py

The total polarization vector P%' is the sum of these two contributions. In
the case of InGaN layers coherently grown on GaN, the piezo-polarization is
normally greater than the spontaneous one (except for low In-content alloys
nearly lattice-matched with GaN). In contrast, the spontaneous polarization
dominates in the AlGaN alloys grown on GaN. Generally, the sign of the piezo-
polarization vector depends on the kind of strain (tensile or compressive) while
that of the spontaneous polarization is controlled by the crystal polarity (III-
faced, or N-faced).

2.1 Carriers concentrations

Electrons and holes obey generally the Fermi-Dirac statistics, i.e. their con-
centrations are defined by the expressions

n Ec + Es B B
= NF (P ) = SN (B )

where J /5 is the Fermi integral

/2

2 00 .’171
Fi2(§) = ﬁ/o 1+exp(z — &)

dx

¢n , @p are the electron and hole quasi-Fermi levels, respectively, £ 1is the
Boltzmann constant, 7T is temperature, ¢ is the electron charge, FE. is
the conduction band edge. Summation in Eq.(1) is performed over three hole
subbands (s = hh,lh, so) corresponding to heavy holes (hh), light holes (Ih),
and split-off holes (s0); thus E, denotes the top edge of the respective valence
subband. The effective densities of states of electrons in the conduction band,
N, , and holes in the respective valence subband, Ng , are given by the



expressions

LT 3/2 kT 3/2
_ Lo lI\1/2 — LmINt/2 [ =
N, 2m,, (mn) <27Th2> SRF 2m (mS) <27Th2> ’

L and ml are the in-plane and normal

where 7 is the Plank constant, m,,
(along the z-axis) electron effective masses, m: and ml are the in-plane

and normal hole effective masses in the corresponding subband.

If the hole quasi-Fermi level lies above the valence band top FE, = mgx(Es) ,
the hole concentration may be approximately calculated as

B, — ¢, —
p=N,Fijs (M) , N.=3N,exp (—

b, — EV>
kT

kT

In the opposite case, where the hole quasi-Fermi level lies well below the top
of the lowest hole subband, the latter expression for the hole concentration
remains valid, if the effective hole density of states N, is taken equal to the
sum Nhh + Nlh + Nso .

2.2 Transport of electrons and holes

There are two alternative approaches to simulation of carrier transport in
semiconductor devices [15]. One is a particle-based approach such as, e.g.,
the full-band ensemble Monte Carlo method [16]. Its undeniable advantage
is an accurate description of the carrier dynamics at an arbitrary ratio of
the free carrier path to a characteristic device dimension. The price for the
accuracy is the need in huge computational resources, somewhat alleviated by
both advances in algorithms [17] and development of a low-cost hardware for
parallel computations.

Another approach relies on continuum (macroscopic) models. Generally, the
complexity of carrier transport descriptions reduces from rigorous kinetic mod-
els (the Boltzmann equation in the semiclassical case or its quantum-mechanical
analog involving the Wigner function) through numerous quasi-hydrodynamical
models to the DD ones [18,19]. The family of the continuum models is further
extended by the development of hybrid models which couple models of various
levels in different domains of the device [20]. Continuum models, when ade-
quate, provide well over two orders of magnitude reduction of the CPU time
compared to the particle-based approaches [21].

The DD model [22] could be derived formally from the Boltzmann equation
(see, for example, [23]). Suggested over a half century ago in [24], it is based
on the older ionic transport model by Nernst and Plank. Still, up to now it



represents the most reasonable compromise between the computational effi-
ciency and the accuracy of the description of underlying physical phenomena
for a great variety of semiconductor devices [25].

In the case of a IIl-nitride LED, the DD model consist of the Poisson equa-
tion for the electrostatic potential ¢ , accounting for both spontaneous and
piezopolarization, and the continuity equations for electrons and holes:

V(P — 02 Vp) =q (N} — Ny +p—n) (2)

VI, =-R , an—“j]”wn (3)
[ip P

Vid,=—-R , Jp:pT Pp (4)

Here ¢, is dielectric permittivity of vacuum, £ is the static dielectric permit-
tivity tensor, p, is the electron mobility, p, is the hole mobility assumed to
be the same for all the valence subbands, N7 and N, are the concentrations
of ionized donors and acceptors:

N = No
b= n_Ec+ +E ’
14 gpexp <('0 kqu D>
_ Na
Na = E, —qo+ Ex —@p\
1+gAexp< T )

where Np and N, are the total donor and acceptor concentrations, re-
spectively, gp and g, are the degeneracy factors, Fp and FE, are the
ionization energies of the impurities. The electron and hole fluxes, J, and
J, , are related to their partial electric current densities, j, and j, , by the
equations: j, = —qJ, , j, = ¢J, .

The recombination rate R accounts for both non-radiative and radiative
channels, i.e. R = R™ + R . The non-radiative carrier recombination is
assumed to proceed primarily on the threading dislocation cores and can be
accounted for within the Shokley-Read approach:

nr np ©n — 9017
= [
Tp(n + na) + Ta(p + pa) AT TT
where
g = - exp (Ed_§0n> Pa=p-exp <<Pp_Ed>
kT » M kT ’



and the electron (hole) lifetime, 7, , is [10]

- . 1 In < 1 ) B § 2Dn(p)
"0 4r Dy Na | \ma?Ng) 2 aVpp)S

Here, Ny is the dislocation density, Dy = (kT/q)nep) is the diffusivity

of electrons (holes), Vi) = (3kT /mf‘l‘gp))l/ 2 is the carrier thermal velocity,
(may,)*? = mi(p)(mu(p))l/ 2, S is the fraction of electrically active sites in

a dislocation core, and FEy is the energy level associated with the dislocation
traps (see Ref. [10] for more detail).

The bimolecular radiative recombination rate is defined by the expression

)
np exp T s

where B is the radiative recombination rate constant.

Let us associate the left edge of an LED heterostructure with the n-doped
region and the right edge with the p-doped region. Then the boundary condi-
tions for the Poisson equation (2) can be stated as follows:

Gt =0, Qright = 0@ .

Here, ¢ is the sum of the applied bias and contact potential, the sub-
scripts ’left’ and ’right’ refer to the position of the left and right edges of
the LED heterostructure, respectively. The boundary conditions for the con-
tinuity equation (3)-(4) are derived from the electric neutrality condition,
N — Ny +p—n =0, assumed to be met at the edges of the LED het-
erostructure, i.e.

Nt — Ny
gOn:Ec—i—kal_/é DTAH) - ND>NA
_ N_—]\C7++n
gpszv—kal/;(ATD)—cp . Np<Na

while the Neumann boundary conditions are set for the minority carrier quasi-
Fermi levels.

An important mechanism that is presently ignored but should be incorporated
into the transport model in the future, is the tunneling current. A strong, up
to ~ 3 MV/cm, polarization fields frequently create high but narrow local
potential barriers near the structure interfaces, hindering the carrier injec-
tion into the active region (see Sec.4 for more detail). In such cases, however,
the contribution of the tunneling current may be comparable with that of
the drift-diffusion current. There is, nevertheless, an evidence that the carrier



tunneling enhanced by the dislocation-mediated deep-level states [26] is impor-
tant at low/medium injection levels only, while under typical LED operation
conditions the injection current produced by the drift-diffusion-recombination
processes dominates [27,28]. Recent experiments [29] also show that the tun-
neling current may be suppressed in the high-quality structures even at the
medium injection level due to the defect density reduction.

2.3 Light emission spectra

A band diagram and carrier concentrations obtained from the coupled solu-
tion of the Poisson and transport equations are then used to compute the light
emission spectrum of an LED. In the present model, the spectral computations
are decoupled from the band diagram analysis, i.e. the predicted conduction
and valence band profiles are not used for making quantum-mechanical correc-
tions of the radiative recombination rate. Only the principle channel, radiative
recombination between the electron and hole states confined in the QW ac-
tive region, is considered for simplicity. For this, the Schrodinger equations
for electron and holes are solved with the potential energy profile determined
from the self-consistent solution of the Poisson and DD transport equations
(2)—(4). The complex valence band structure of the group-III nitride semicon-
ductors is taken into account within the 8 x 8 Kane Hamiltonian [30]. The
splitting of the heavy, light and split-off valence subbands in the centre of
the Brillouin zone is assumed to be independent of the build-in electric field.
Thus, the profiles of every valence subbands are equal to that predicted by
the Poisson and DD equations.

The wave functions of electrons and holes are chosen in the form
ugm Wy (z)exp(kn - r) , ul*Ve(z)exp(ky-r) ., s=hhlh,so

where uf" and uJ* are the spin-dependent Bloch amplitudes of electrons and
holes corresponding to the center of the Brilluene zone, k, and k, are their
in-plane quasi-moment vectors, ¥, and ¥, are the envelope functions. The
Bloch amplitudes can be found as a superposition of the basis wave functions
derived in [30]. The Schrédinger equation for the electron envelope function
can be written in the approximate form

n: 42y,
2]y 22 (B. — qp) ¥, (5)
where (ml) is the longitudinal electron effective mass averaged over an in-
dividual QW with the weights proportional to the quasi-classical electron
concentration (1), FE is the energy of a confined electronic state. The av-
eraging procedure accounts approximately possible variation of the electron



effective mass across the heterostructure due to the composition variation of
the material.

For heavy, light, and split-off holes similar equations are valid

o d%v,
2(mll) dz?

where (ml]) is the longitudinal hole effective mass averaged over the individual
QW .

Eqgs.(5)—(6) are solved in the domain that includes the QW and the parts of
surrounding barriers, large enough to set the homogeneous Dirichlet boundary
conditions for the equations (5)—(6). The semiclassical wavefunction with the
energy equal to the Fermi level in the QW is used to safely estimate the
necessary size of the domain by the rate of the wavefunction decay in the
barriers. The fourth-order finite difference (FD) scheme has been used for the
solution of the eigenvalue problem for the Shrodinger equations.

Assuming vertical band-to-band transitions, the emission rate of photons with
the frequency w from an individual QW is given by the expression

7T q 2 j 7 On - Os
w@) =7 (L) Y S SRR (5 Ax - pluT
0C/ K s\ 0nsos ja
) ) h2k2
X fufed (m_Eg_ng - BV ~ 2uf> (7)

where indexes 7 and 7 mark the confined states of electrons and holes in the
QW, myq is the electron mass in vacuum, ¢ is the light velocity in vacuum,
A, is the vector potential of the electromagnetic wave with polarization
denoted by the subscript A, p is the momentum operator, fi and f; are
the distribution functions of electrons and holes corresponding to the quasi-
momentum vector k =k, =k, , E, is the bandgap of the semiconductor,
EW and E{ are the energies of confined electron and hole states, and
i m#mﬁs (myr + mj,s) is the in-plane reduced effective mass of the
carriers; d(x) is the delta-function. In Eq.(7), summation is performed over
all the k-states, valence subbands, two orthogonal light polarizations, spin
states of electron and holes, o0, and o, , and electron/hole states confined

in the QW.
To account for a uniform spectrum broadening, the photon emission rate is

convoluted with a Lorentzian (I'/7) [(E — E /)2 +T2]"", where T is the broad-
ening parameter.
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3 Numerical implementation

The drift-diffusion Eqs.(2)—(4), being a singular perturbed problem, can ex-
hibit both boundary and interior layers with a rapid variation of the carrier
concentrations and/or electric field [31,32]. Moreover, the stiffness of the DD
equations increases nonlinearly with the bandgap of the material. Additional
difficulty typical of nitride devices is a strong build-in electric field due to both
spontaneous and piezo-polarization, resulting in a huge transformation of the
device band diagram. Although the DD model was widely used for decades
(see, for example, [33]), a rigorous analysis of the underlying equation sys-
tem has been carried out under quite restrictive assumptions only (decoupled
problems for the electric potential and carrier concentrations, no generation-
recombination processes, Boltzmann statistics, etc.) and mostly deals with the
existence rather than with the uniqueness of the solution [34-37]. Moreover, it
was found that the solutions of one-dimensional ”voltage driven” problem are
not unique in some particular cases [38]. Thus, the choice of an appropriate
numerical model implementation is critical for getting reliable results.

3.1 Approximation of the DD equations

The DD model can be formulated using quite different sets of mutually de-
pendent variables [39] —

e "natural” concentration-potential variables: [ ¢, n,p ]
e quasi-Fermi level formulation: [ ¢, ¢n, ¢, |
e Slotboom formulation [40]: [ ¢, u,v; where u = n - exp(—qp/kT) and v =

p-exp(qp/ET) |

The latter choice is attractive mathematically since the carrier continuity
equations are self-adjoint and linear in w and v [32], which simplifies the
analysis of the DD model in the case of the Boltzmann statistics. Another ad-
vantage of the Slotboom variables is the symmetry and positive definiteness
of the matrix of the linearized discrete equations. However, the coefficients
of these equations depend exponentially on ¢ , ¢, , ¢, . That is why the
Slotboom variables are mainly used for analytical studies. An extension of the
formulation to the case of a heavy doping of a semiconductor (Fermi-Dirac
statistics) is cumbersome and unnatural.

It is well known that the polynomial finite-difference (FD) schemes do not
provide a uniform convergence with respect to a small parameter [31]. To
overcome this problem, the exponentially fitted FD schemes have been sug-
gested in [41-43]. The idea is to exploit the exact (fundamental) solution of the
homogeneous equation for discretization of the continuity equations written in
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terms of the "natural” variables. Our attempt to use the Scharfetter-Gummel
scheme [43] for analysis of the carrier transport in nitride LED structures was
only successful for low doping levels and moderate biases. If the doping and
the voltage increase, spurious current oscillations near abrupt structure in-
terfaces start to occur. At least partly, this artifact is the result of the finite
length of a computer representation of the floating point numbers, since the
oscillation magnitude diminishes with the increase of the word length from 8
to 12 bytes. However, even the latter accuracy proved to be insufficient for
highly doped wide-bandgap heterostructures at all biases of interest.

The quasi-Fermi level formulation is the most natural one for the degener-
ate case and, as well as Slotboom one, ”regularize” the problem by reducing
the dynamic range of the unknown variation. In the ordinary finite-element
(FE)/finite-difference methods an asymptotic order of the derivative approxi-
mation is less by unity then that of the variable itself since the differentiation
procedure lowers accuracy. On the other hand, one is often no less interested in
the detailed distribution of the electric field and partial current densities across
the heterostructure. Thus, the mixed FE method (FEM) [32] is employed in
our study. The one-dimensional DD equations are re-written as a system of
the first-order equations in the electrostatic potential ¢ , z-component of the
electrostatic induction vector D, , the electron and hole quasi-Fermi levels
©n s ¥p , and the corresponding carrier fluxes along the z-coordinate J,., J,,
(the subscript ”2” is omitted in the following equations):

D, = q[Ng (e, 0n) = Nx (¢, 0) + Pl 05) — 00, 0n)]
. = (P = D)/eoezs

<(%V:—RWWm%) (9)
P n)

(8)

Ip =
\ q

(Jp)z, = —R(QD, Pns 9010)
Hp P\, P /
J = . ( P) (QOP)Z

(7 q

A

(10)

In Eqs.(8)-(10), G, denotes the derivative of the variable G by z . These
pairs of equations, expressing the conservation of charge, electron and holes,
respectively, have the same structure as the equations

(@), =Q(2)
G =A(2)f."+ B(2)

12



where the first one is the balance equation, while the second one is the linear
combination of the kinematic and the constitutive equations (for example, for
the charge conservation subsystem the latter two equations are — Vp = E
and D = goe33E + P™ ). A derivation of discrete FE equations proceeds
in the standard way (see, for example, [44]): the differential equations are
transformed into a weak form via multiplying them by test functions and
integrating the product over the computational domain. The basis functions
of the mixed FEM for the generic system (11) should belong to proper spaces
(to the space L? of the square integrable functions for f and to the space
H(div) of the functions with the square integrable derivatives for G' ) [32].
Thus, f(p,¢n,¢p) can be approximated by a set of the piecewise constant
functions

f(z) = Z fiM;(2)

while G(D, J,, J,) — by a set of the piecewise linear functions
G(z) = X FiNi(2)

Defining Q = (z;, zi11) , Q = [2i, zi11] , the basis functions M;(2) and N;(2)
can be evidently written as

ETEL i Le0y,
1, if zeQ %~ %1 )
M;(2) = Ni(z) = M, if ze€,
0, if z¢ Zit1 — Zi

0, if z ¢ Qi—l U Ql

The use of the zero-order elements for the primary variables and of the first-
order elements for the fluxes may be counter-intuitive, but it is just this unique
feature of the mixed FEM that permits a more accurate description of the
electric field and current densities. which is often of a primary interest.

3.2 Solution of the discrete DD equations

There are two basic approaches to the solution of coupled nonlinear equations
like the discretized DD ones
F(®)=0 (12)

where
F = (Fw Fo,, pr)Ta ® = (0, P, (pp)T

for the ordinary FD/FE methods and

F = (Ftpa FD: Ftpna FJna Ftppa FJp)Ta P = ((I)Lpa (I)Du (I)na CI)Jna (I)pa cI)J;D)T

13



for the FEM approach; superscript 1”7 denotes a transposition.

The first approach is a simultaneous solution of the equations. The advantage
of the well known Newton method ( i is the iteration number)

OF

1 = @' — J1(®)F (P! J=_——
()F(2Y), 7%

over other techniques is its quadratic convergence property. Unfortunately,
this method has two drawbacks. One, a high cost of the Jacobian J compu-
tation and the necessity to solve a large linear system, can be partly overcome
by a ”"lazy” updating of J or/and its approximation [45]. Another drawback
is more severe: the Newton method is extremely sensitive to an initial guess.
General methods such as the variable metric one, being tolerant to the ini-
tial guess, are applicable in practice to the systems with reduced number of
equations [46].

The second approach is a segregated solution of the underlying equations. In
this method known as Gummel’s method (” Gummel’s map”) [47] the three dis-
crete equation systems (Poisson, electron, and hole continuity equations) de-
rived within the ordinary FD/FE methods are solved sequentially in a Gauss-
Seidel fashion:

F<P ((I)f:—la (p;u (I);)) =0 (13)
Fo, (9,7, @11, @) = 0 (14)
FiPp (CI)Z:—l’ cI)fz+17 (D;;—H) =0 (15)

Fixed points of such a mapping correspond to the solutions to the DD equa-
tions [36]. The attractive property of the Gummel method is a robustness with
respect to an initial approximation. There is an evidence, however, that the
approach could be inadequate near the breakdown voltage when the electron
and hole continuity equations are strongly coupled due to large generation-
recombination terms [48]. It should be noted that the solution of individual
equations in the Gummel’s map can still be performed using Newton method,
while the method itself could be combined with Newton method as an aid
to get a good initial guess for the latter [49]. In the case of the FEM the
segregated solution procedure Eqgs. (13) - (15) transforms into the following
one
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0
(16)
0

(@5, 0", @, ), @), @7 )
Fp(®it, &, @1, &4 , &L &) )
Fy, (®LF, @1, i, @5, 0L, @7 ) = 0

S (17)
Fy, (®L, @, @4, @4 @ @ ) = 0

Fo, (@01, 71, @iFL, @4 it @it = a8)
=0

i+1 1+1 141 i+1 141 i+1
FJp((I)go ?(I)D 9(I)n 7(I)Jn 7(I)p 7cI)Jp )

Thus, three nonlinear subsystems Eqs.(16)—(18) for (¢, D), (¢n, J5), and (¢, J,)
are to be solved sequentially until the prescribed convergence condition is met.
In the present paper, the approach based on the homotopy method is adopted,
following [50]. The idea of this method called also the continuation method
or path following [51] is to consider the following underdetermined equation
system
H(®,\) =0

instead of Eq.(12). Here, H: RE @ R — R¥X is a smooth map that implicitly
defines a curve as a function of parameter A . The most common use of this
method is to define

H(®,)\) = F(®) — \F(®,)
and follow the path from (®4,1) to the solution of the initial problem (®,0) .
In Ref.[50] the homotopy method is implemented as an artificial transient
problem

H(®,)\) = F(®) +§

so the solution is determined as the limit at A — oo . Thus, the equations can
be re-written in accordance with the following modification (illustrated below
for the generic subsystem)

fk—H _ fk . .

The choice of the local fictious time steps 75(z) , 75 (2) , and 7} (2) for

the discretized equations is discussed in detail in Ref.[50].

3.3  Verification

The above model of carrier transport and light emission has been imple-
mented into the SiLENSe code (Simulator for Light Emitters based on Nitride
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Semiconductors) [52]. In this section, we discuss the necessary stages of a nu-
merical tool development — verification (an assessment of the correctness of
the model implementation) and validation (an assessment of the adequacy of
the model to the reality ) [53].

Verification is primarily a mathematical issue. The major sources of the errors
have been listed in Ref.[54]: insufficient spatial and/or temporal discretiza-
tion convergence, insufficient convergence of an iterative procedure, computer
round-off, and programming errors. The errors of the last type are the most
difficult to detect and fix when the code executes without an obvious crash
vielding “moderately incorrect results” [54] . The study reported in Ref.[55] re-
vealed a surprisingly large number of such faults in the tested both commercial
and research scientific codes regularly used by their users. Standard verifica-
tion approaches are generally based on either comparison of a numerical and
an exact solutions or/and computations followed by the grid refinement.

Grid convergence for a simple structure (GaN p-n junction with the donor and
acceptor concentrations of 10'® ¢cm™3) is illustrated by Fig.1. Different norms
could be used to measure the solution error [56]. Normally, the error ey of
the variable f is estimated in the Euclidian norm (2-norm) L?

LN 1/2

N Z fbench Zz))2

i=1

where f; is the computed value at the point 2; and fpenen(2;) 1is the
”benchmark” solution at this point, N is the number of points. This measure,
however, could be misleading in simulation of the semiconductor devices when
thicknesses of individual layers are comparable with the space-charge region
widths. Indeed, the electric field and the carrier concentration distributions
exhibit in complex heterostructures numerous sharp maxima and minima.
Thus, it is anticipated that it is more useful for the device engineer to know how
well the numerical method reproduces these singularities, i.e. the maximum
norm (oco-norm) L

65?00 - mlde |(f2 - fbench(zi))|

seems to be more appropriate. This norm for the electric field scaled by the
variable value in the position of maximum error, i.e. the ”"oo-norm” of the
relative error

LOO

op = , i* ey = Ei — Epencn(2ir)

is shown in Fig.1 for a uniform and different non-uniform grids versus the
number of elements N . The "benchmark” solution is obtained on the uniform
grid containing 20000 elements. This plot underlines one of the advantages of
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the mixed element formulation — tolerance to relative sizes of neighboring
elements: the results marked by ”diamond” are obtained on the grid with
the piecewise constant element size and the aspect ratio of the neighboring
elements Az;/Az;.; up to 50.

10°F 10°
B —Q=— uniform -
= —a—  linear [ |
(<] . 0 10"k
s —/——  quadratic =
q>> 10" - * piecewise g
= s constant E 102
1] K]
] g
£ 3 E10°f
E10°F E —o— .
x - = potential
g N S 10* k e
= —O— electric
—m field
10'3 L IR | L IR | L IR 10-5 L IR | L el L [
10 10° 10° 10* 10’ 10° 10° 10
Number of elements Number of elements

Fig. 1. Convergence tests for GaN p-n junction (left) and GaInN/GaN heterojunc-
tion (right).

Another test case refers to the GalnN/GaN heterojunction including n-GaN
doped with 10 em~2 donors and p-GalnN doped with 10'® e¢cm=2 accep-
tors. Under forward bias, this structure provides local extremuma in the elec-
tric potential, electric field, and carrier concentrations. The maximum rela-
tive error for the first two variables as a function of the number of elements
is also displayed in Fig.1. Here, the open symbols correspond to a uniform
grid, the filled ones — to grids with variable steps (the maximum aspect ratio
max{Az;}/min{Az} = 2500 , the aspect ratio for the neighboring elements
Az;/Az 1 = 10). One more advantage of the FEM scheme, an accurate re-
production of derivatives (in particular, of electric field that is the derivative
of the electric potential), is evident from Fig.1.

For a number of reasons, direct validation of the 1D numerical model of
the LED heterostructure is not easy. First, in practice a strong lateral non-
uniformity of the current density and light emission intensity is observed be-
cause of the planar design of an LED chip (see, for example, [3,57]). Actually,
the current density may vary by the order of magnitude in the p-n junction
plane. Second, InGaN QWs exhibit remarkable composition fluctuations on a
microscopic scale, forming In-rich regions of tens nanometer in lateral dimen-
sion and a few nanometer in height. This results in considerable local variation
of the light intensity due to the interplay of radiative and non-radiative re-
combination. For instance, the fluctuations of internal quantum efficiency from
10% to 50% have been reported in [58]. Third, the published descriptions of the
LED heterostructures are rarely complete, first of all, with respect to the QW
composition and active layer doping. The latter issue is extremely important
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if co-doping is employed. In particular, simultaneous doping of the active layer
with Si and Zn result in a large, ~ 0.4-0.5 eV, shift of the emission peak [59]
and evidently affects the internal quantum efficiency of the LED structure as a
whole. All these details of the LED design are frequently obscure, which leads
to an uncertainty when comparing the theoretical and experimental results.

Hence, the questions are: how mature is the developed numerical approach?
could it provide new knowledge and serve as an aid in the development and /or
optimization of a III-nitride LED structure? An attempt to answer these ques-
tions using the available data on LED heterostructures and their operational
conditions is reported in the next section of the paper.

4 Examples of simulations

Accurate determination of materials properties is the factor largely affect-
ing the predictability of simulations. Unfortunately, the materials properties
of group-III nitrides are known not so well as those of conventional III-V
compounds and silicon. Up to now, the bandgaps of InN and InGaN ternary
compounds are the subject of extensive discussion in literature (see , e.g. [60]).
The values of spontaneous electric polarization of binary nitrides are obtained
by first-principle computations only (see [61] and references therein). There is
even considerable scatter between various theoretical estimates for carrier mo-
bilities obtained by the Monte-Carlo method (see, for example, Refs.[62,63],
published in the same journal issue). The measured carrier mobilities, how-
ever, depend strongly on the growth conditions and, therefore, should be rather
borrowed from experiment.

Accounting for the importance of this issue for the validation of the ITI-nitride

LED model, we summarize below the material properties of group-III nitrides
used in our simulation of carrier transport and light emission.

4.1 Material properties

In this paper, all the material characteristics of nitride alloys are approximated
by the Vegard rule

fanGayn_x_yN = Tfax + Yfeax + (1 =2 = y) fun

the only exception being the bandgap of the materials for which a quadratic
approximation is used:
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(Bg) AlcGayiny—x_yN = T(Eg) Ny + y(Eg)can + (1 — 2 — y)(Eg)mn (20)
—2ybal—Ga — (1 — 2 — y)bar-m —y(1 — 2 — y)bga—in

where the bowing parameters baj_ga , bal_-m , bai_m , based on the analysis
of Refs.[2,64-68], are taken equal to 1.0, 4.5, and 1.2 eV for AlGaN, AlInN,
and GalnN, respectively. The materials characteristics of binary nitrides used
in our computations are given in Table 1. These values have been chosen af-
ter the analysis of the published data: Refs.[2,69,70] on the lattice constant,
Refs.[2,69,71,72] on the elastic constants, and Refs.[73,74] on the dielectric per-
mitivity. The bandgaps are taken from Ref.[75], while the parameters related
to the piezo-polarization — from Ref.[76]. Effective electron and hole masses
in the binary nitrides at 300 K (Table 2) are borrowed from Ref.[77] for AIN,
InN and from Ref.[30] for GaN. The data on the bandgap offsets in III-nitride
heterostructures are reviewed in [2]. On the basis of the data, one can derive
that the valence band offset in all nitride compounds is equal to ~30% of
the full bandgap offsets. This value, which agrees well with the theoretical
predictions of Ref.[78], is taken in our simulations.

Table 1
Properties of binary nitrides.

Parameter Symbol Units AIN GaN InN
Lattice constant a nm 0.3112 0.3188 0.3540
Static dielectric constant €33 8.5 8.9 15.3
Spontaneous polarization PSP C/m? -0.081 -0.029 -0.032
Piezoelectric constant €13 C/m? -0.58 -0.33 -0.22
Piezoelectric constant es3 Cc/ m? 1.55 0.65 0.43
Elastic constant Ci3 GPa 115 105 95
Elastic constant Cs3 GPa 385 395 200
Bandgap E, eV 6.2 3.4 0.7

For simplicity, we used the same donor and acceptor ionization energies, Ep =
13 meV and E, = 170 meV , and the radiative recombination rate constant
B =2.4x10"" ¢m3/s [79] for all the nitride alloys. The acceptor and donor
g-factors, gp = 2 and g¢gn = 4, and the spectrum broadening parameter
[' =20 meV have been taken in all computations.
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Table 2
Effective masses of electrons and holes in binary nitrides.

AIN GaN InN
I

m, 025 025 02 02 01 0.1
mppn 195 025 1.1 015 135 0.1
mpm 195 258 11 165 1.35 145
mpse 023 193 015 1.1 009 1.54

4.2 Blue single-quantum-well LED structures

Structure with compositionally uniform layers. This heterostructure
has been described in [27] (its parameters are given in Table 3). The im-
purity concentrations are chosen on the basis of previous publications by S.
Nakamura. The structure is assumed to be grown on a Ga-faced surface (Ga-
polarity), the operation temperature is taken to be of 300 K, the chosen thread-
ing dislocation density Ny = 108 cm~2 is by the order of magnitude lower than
the typical dislocation density in the LED heterostructures grown by metalor-
ganic chemical vapor deposition (MOCVD). The reduced N; used in the
simulations accounts, at least qualitatively, for the effect of In composition
fluctuations responsible for the carrier capture in the In-rich regions avoiding
their non-radiative recombination on threading dislocations cores [80].

Table 3
Blue InGaN SQW LED structure.

Layer Thickness Material Type Doping
(nm) (cm™?)
n-contact 600 GaN n 3 x 108
QW 3.5 Ing2oGapggN UID —
p-emitter 100 Aly1GaggN p 7 x 1019
p-contact 600 GaN p 7 x 101

The results of simulations of the SQW LED heterostructure for the typical
current density of j = 30 A/cm? are shown in Figs.2-6. A specific feature
clearly seen in the band diagram (Fig.2a) is the drop of the electron quasi-
Fermi level ¢, near the InGaN QW. Actually, ¢, varies continuously but
very steeply in the n-GaN contact layer near the InGaN/GaN (left) interface.
This effect, described earlier in Ref.[81] with reference to an AlGaAs/GaAs
laser heterostructure, originates from a drastic lowering of the electron con-
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centration caused by the local potential barrier appeared at the InGaN/GaN
interface due to its negative polarization charge. The higher the current den-
sity through the diode, the higher is the drop of the electron quasi-Fermi level,
until a high injection level is reached at an increased forward bias, enhancing
screening of the built-in electric field.
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Fig. 2. InGaN SQW LED structure at j = 30A/cm?: (a) band diagram (¢, and ¢,
denote the quasi-Fermi levels of electrons and holes), (b) ionized impurity concen-
trations, (c) carrier concentrations, and (d) recombination rates.

In contrast to conventional III-V compounds, the above effect is much more
pronounced in ITI-nitride materials because of a huge polarization charge ac-
cumulated on the left InGaN/GaN interface (the charge corresponds to the
sheet concentration of ~ 103 — 10 cm™2 depending on the InGaN compo-
sition). In particular, for green LEDs the DD model predicts even formation
of a nearly insulating layer at this interface, which does not allow flowing of
a remarkable current through the device. In practice, however, a tunneling
current starts to dominate under these conditions, which is not allowed in the
current model.
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The ionized donor and acceptor concentrations (Fig.2b) change weakly with
the forward bias. However, due to a high Mg acceptor ionization energy, the
ionization efficiency of acceptors may vary up to two orders of magnitude
depending on the local hole quasi-Fermi level position.

The distribution of carrier concentrations and recombination rates are shown
in Fig.2c,d. Because of the barrier at the left InGaN/GaN interface, electrons
penetrate to the InGaN SQW much poorer than holes. Therefore, the efficiency
of the carrier injection into the InGaN active layer is limited by electrons rather
than by holes as it might be expected from a lower hole concentration in the
p-AlGaN emitter. Both electrons and holes are seen to be poorly confined near
the InGaN SQW (Fig.2a) because of low barriers created in the p-AlGaN and
n-GaN claddings, respectively.

Due to a high dislocation density in the LED structure, the non-radiative
recombination of the non-equilibrium carriers prevails the radiative one at a
lower injection level. As the injection level increases, the carrier recombination
becomes localized in the InGaN quantum well and the radiative recombination
starts to dominate (Fig.2d). The tail of the non-radiative recombination in the
n-GaN contact layer is caused by the hole penetration to this region, which
increases with bias.

The electric field in the LED structure is predicted to be as high as ~ 2 —
3 MV/cm (Fig.3). The field is found to decrease considerably with bias both
in the quantum well (due to screening by the non-equilibrium carriers) and
in the emitters (due to narrowing of the space-charge region). Actually, the
electric field in the QW is a superposition of the positive built-in p-n junction
field and the negative polarization field. Therefore, the conventional estimates
of the field based on the polarization charges and QW thickness only normally
fail even at a low bias.
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Fig. 3. InGaN SQW LED structure: electric field distribution.
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Fig. 4. InGaN SQW LED structure: ground-state electron and hole wave functions.

The electron and hole wave functions corresponding to their ground states
in the InGaN SQW are plotted in Fig.4. It is seen that electrons and holes
are shifted to the opposite edges of the QW due to the Stark effect. Because
of the reduced overlap of the electron and hole wave functions, the radiative
recombination rate is expected to be lower than in the respective InGaN bulk
material. However, in addition to the ground electronic states, up to 6-8 ex-
cited states are found to exist for holes and, at a high bias, an additional
excited state appears also for electrons. Under these conditions, the reduction
in the radiative recombination rate becomes not so evident and the Stark ef-
fect may be, at least partly, accounted for via separation of the electron and
hole concentration peaks (see Fig.2¢). In our opinion, this issue requires more
detailed examination.

The IQE of an LED structure is defined as the the ratio of the radiative
recombination rate integrated over the structure to the carrier (electron or
hole) flux in the respective contact layer. The IQE depends strongly on the
dislocation density Ny due to competition of the radiative and non-radiative
carrier recombination (Fig.5). Though the typical value of Ny in the MOVPE-
grown heterostructures is about 10° cm™2, the effective dislocation density
controlling the non-radiative recombination is lower due to the In-composition
fluctuations. Therefore for InGaN LEDs, the dislocation density Ny is rather
an adjustable parameter that requires careful estimation from observations.
For SQW LED considered, the value Ny = 10® cm™2 provides the saturation
of the light emission efficiency at 57 ~ 10 A/cm2, in accordance with the
maximum of the LED external efficiency measured in Ref.[27]. Therefore, just
this value is chosen for further simulations. In this case, the corresponding non-
radiative life times due to carrier recombination on threading dislocations in
the active region are: 7, = 9 ns and 7, = 46 ns.

Generally, the non-radiative carrier recombination on point defects should
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be also included in the recombination model, in addition to the dislocation-
mediated recombination. The estimates of the respective electron and hole life
times made from the carrier diffusion lenghts measured in low-dislocation GaN
(see references cited in [10]) show that they are in the range of ~ 10—100 ns, if
the dislocation density is less than ~ 107 — 10® cm™2. In our study, we neglect
this mechanism of the non-radiative recombination in order to clarify better
the impact of dislocations on the LED efficiency.

At the current densities j > 10 A/ em? | fall down of the external efficiency
rather than its saturation is observed in experiment [27]. The efficiency reduc-
tion with current cannot be explained within the existing model and requires
further efforts to understand. In particular, self-heating of the LED structure
may be responsible for the efficiency reduction at high currents (see [82] where
a comparison of dc and pulsed LED operation has been reported, supporting
the latter idea).

1
10.—1'—|-|—|—|'—|'—|-|—|—|'—|'—|—|—|

f —— N=10"cm’

Internal quantum efficiency

Current density (Alcmz)

Fig. 5. IQE of InGaN SQW LED structure as a function of current density computed
for various dislocation densities.

Simulated dependence of the current density j upon p-n junction bias U,
allows calculation of the I-V characteristic of the LED by using the relation-
ships

I=jA UtOt:Ub(j)+j'(ARs+pn+pp) )

where I is the total current, U,y is the total bias applied to the diode, A
is the contact area, p, and p, are the specific n- and p-contact resistances,
respectively, and R, is the series resistance of the LED largely controlled by
the lateral current spreading in the chip. Comparison of the I-V characteristic
of the SQW LED measured on various samples [27,83] with those calculated
for the contact area A = 1072 mm? and the serial resistance R, = 20 € is
presented in Fig.6. It can be seen that the implemented model satisfactory
describes the injection-limited current ( Uy, > 2.8 V). At the biases less than
2.8 V, tunneling current is found experimentally to dominate in the LED
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structure, which is not allowed for in the DD model.
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Fig. 6. InGaN SQW LED: comparison of calculated and measured current-voltage
characteristics.

Detailed analysis of the effect of the crystal polarity on the LED performance
has been reported in Ref.[84]. It has been found that in contrast to the Ga-
faced LED (Fig.2), The N-faced heterostructure is free from the barriers hin-
dering the carrier injection in the active region due to the inversion of signs
of the polarization charges at the SQW interfaces. The improved injection ef-
ficiency and electron confinement result in a lower turn-on voltage compared
to the Ga-faced structure. On the other hand, in the N-faced LED the ex-
ternal electric field and the built-in electric field due to the polarization are
co-directed, leading to a poorer emission wavelength stability upon the bias
variation.

Structure with graded-composition emitters. This heterostructure (see
Table 4 for detailed description) has a linearly graded composition of the n-
contact layer (varied from GaN to GaggoIng gsN) next to the GaggIng o N-SQW
and a linearly graded composition of the p-AlGaN emitter (from Alj g5Gago5N
to Alyp2GaggN). The graded-composition layers provide a distributed polar-
ization doping in the LED structure [9], on the one hand, and built-in fields
pulling electrons and holes, on the other hand.

The band diagram, carrier distributions and recombination rates at low and
high values of the current density in the structure are shown in Fig.7. Employ-
ing of the graded-composition GalnN emitter beneath the GalnN quantum
well allows to lower the potential barrier to electrons at the n-emitter/QW
interface at a high injection level. Similarly, the graded-composition AlGaN
lowers such a barrier to holes at the quantum well/p-emitter interface. In ad-
dition, the carrier confinement near the SQW is improved compared to the
LED structure with constant composition of the layers.
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Table 4
Graded-composition blue SQW LED structure.

Layer Thickness Material Type Doping
(nm) (cm™)
n-contact 700 GaN n  3x10'®
n-emitter 30 graded InGaN n 3 x10'8
QW 3.5  IngoGaggN UID —
p-emitter 50 graded AlGaN p 5 x 1019
p-contact 500 GaN p 5 x 101

In contrast to the structures with the constant layer composition, the ionized
donor concentrations in the graded-composition heterostructure is found to
depend on bias in the graded GalnN layer. The radiative recombination is
well located in the quantum well, while the non-radiative carrier recombination
occurs mainly in the graded GalnN layer (Fig.7e,f) at a low injection level and
has pronounced tails in the layers adjacent to the SQW at a high injection
level.

The emission spectra of the SQW LED considered in the preceding section
(a) and of the graded-composition LED (b) are shown in Fig.8. It can be seen
that there is no remarkable difference in the spectra behavior with current. At
a high injection level, a blue shift of the spectrum and its broadening is ob-
served in both heterostructures, which is related to the contribution of second
confined state of electrons in the quantum well. The spectral peak predicted
for the LED with the constant layer composition is in a fair agreement with
the data (2.77 — 2.80 eV) obtained in Ref.[27] in different samples. Fig.9 com-
pares the emission peak position as a function of current density measured in
[27] and calculated for the InGaN SQW structure with the InN molar fraction
x = 0.215. Fair agreement between the theory and experiment is seen from
the figure.

The IQEs versus current density computed for these two LED structures are
plotted in Fig.10. It is seen that the graded-composition LED exhibits a lower
emission efficiency at the low current densities. It is also found that the graded-
composition LED provides a higher turn-on voltage. From this point of view,
this particular graded-composition LED structure has a poorer performance
compared to the structure with constant layer composition. Nevertheless, we
believe that the potential of graded-composition layers is not yet realized in
full measure. As the use of such layers provides additional degree of freedom for
bandgap engineering of LED structures, more efforts are required to recognize
and utilize the new opportunity.
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Fig. 7. Graded-composition SQW LED structure at j = 1 A/cm? (left) and
1.37 kA /cm? (right): (a), (b) band diagram; (c), (d) carrier concentration; (e), (f)
recombination rates.

4.8 UV multiple-quantum well LED

Development of UV LEDs is an important field of modern optoelectronic in-
dustry. Such devices are normally based on In-free heterostructures with the
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Fig. 8. Emission spectra of SQW LED structures with constant layer composition
(a) and graded-composition emitters (b).

active region made either of GaN (emission wavelength about 365 nm) or
AlGaN (emission wavelength down to 250 nm). The use in these devices of
AlGaN with high AIN content creates additional problems related, first of all,
to extremely low acceptor activation efficiency, poor electron and hole con-
finement, and poor ohmic contacts to both n- and p-type layers. Therefore,
development of UV LED heterostructures requires especially careful design.

In this subsection, we will demonstrate applicability of our model to analysis of
a UV LED operation. As an example, the LED structure reported in Ref.[85]
has been chosen for simulations. The parameters of the multiple-quantum-
well (MQW) heterostructure are given in Table 5. The Ga(Al)-polarity of the
whole structure is assumed in the computations and the threading disloca-
tion density of 10' cm™2 is taken in accordance with observation that the
MOCVD-grown AlGaN epilayers with high AIN content, exhibit normally a
higher defect level. At such dislocation density, the non-radiative life times
of electrons and holes are 0.08 and 0.3 ns, respectively. In the simulations,
we also use the acceptor activation energy of 350 meV to account for a lower
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acceptor activation efficiency in AlGaN with high AIN content.

Some results of he LED structure simulation are presented in Fig.11. The
band diagram (Fig.11a) is found to be quite stable upon the current density
variation. The carrier concentrations (Fig.11c¢) exhibit a non-uniform filling of
individual QWs, which is especially pronounced for holes having much lower
mobility. As a result, the carrier recombination occurs mainly in the QW
adjacent to the p-AlGaN emitter (Fig.11d). The electric field in the QWs is
smaller compared to the InGaN LEDs due to a lower polarization charges on
the MQW interfaces (Fig.11b).

The computed emission spectrum is plotted in Fig.12. Detailed analysis of the
electronic states in the QWs shows that the splitting and broadening of the
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Table 5
MQW UV LED structure.

Layer Thickness Material Type Doping
(nm) (cm™)
n-contact 700 Alp4sGagsoN n 2 x 1019
QW 2 Alp3sGaggsN UID —
barrier 5 Aly4sGagsoN n 2 x 1019
QW 2 AlyssGaggsN UID —
barrier 5 Aly4sGagsoN n 2 x 1019
QW 2 Alp3sGaggsN UID —
p-emitter 10 AlygGagaN p 7 x 1019
p-contact 500 GaN p 7 x 101

spectrum is related to the appearance of the extra electron two-dimensional
subband at a high bias. The computed peak wavelength agrees well with that
measured in [85].

The data reported in [85] allows calculation of the external emission efficiency
of the UV LED as a function of current density in a wide range of its vari-
ation. We have found a close correlation between the predicted IQE and the
measured external efficiency as shown in Fig.13. The deviations observed at
low current densities is apparently related to non-ohmic contact to n- and
especially p-layers. Another discrepancy observed at a high current densities
has presumably the same nature as that in the InGaN QW heterostructures,
which requires further studies to be understood.

The above modelling results clearly show the importance of the dislocation
density for the LED performance. Actually, the dislocation density is the most
critical parameter controlling the IQE of group-III nitride LEDs. A higher
effective dislocation density in the In-free heterostructures is one of the reasons
why the UV LEDs normally exhibit much poorer efficiency than the InGaN
blue and even green LEDs. Other aspects of MQW LED operation, including
selective barrier doping, are discussed in detail in [86].

5 Summary

We have examined the applicability of a one-dimensional DD model to simula-
tion of the carrier transport and light emission in III-nitride LED heterostruc-
tures. The numerical implementation of the model based on the mixed finite-
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element approach is found to be most appropriate for modelling of the wide-
bandgap devices. Despite the inherent inaccuracy of the DD approach that
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ignores the carrier delocalization due to quantum-size effects, the DD model
is found to reproduce basic trends in the III-nitride LED operation, like the
spontaneous and piezo-polarization impact on the band diagram and the IQE
dependence on the threading dislocation density in epitaxial materials. The
former allows, in particular, a better understanding of the role of crystal polar-
ity in bandgap engineering of LED heterostructures. The latter provides a tool
for the structure optimization aimed at increasing of the LED IQE. Potential
of distributed polarization doping in graded-composition I1I-nitride materials
for designing of LED structures is, in our opinion, still underestimated. How-
ever, because of the competition between the enhanced carrier concentration
and built-in pulling field, the advantages of the graded-composition alloys can
be utilized in full measure only on the basis of a careful examination of their
total effect on the device performance. For this, numerical simulation may be
especially helpful.

We have found that the computations of the light emission spectra based on
the quantum-mechanical treatment of carriers confined in the QW active re-
gions of LEDs provide quite reasonable predictions for the peak wavelength
position and its shift with current through the diode. The predictability of the
model can be further improved by accounting for the strain-dependent valence
subband shifts which are expected to affect not only the material bandgap but
also the conduction and valence band offsets at the QW interfaces. Alterna-
tive radiative recombination channels like those involving holes bounded by
deep Mg acceptors should be considered additionally in the structures with
doped/co-doped active region.

Our simulations have revealed that the theoretical I-V characteristics of III-
nitride LEDs are inadequate at low-current operation, which is because of ne-
glecting the tunnelling current. As the latter is essentially non-local, a special
approach for modelling the tunnelling current has to be developed, compatible
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with the local DD model, or hybrid simulations with a smart separation and
coupling of the classical and quantum regions should be applied.

In this paper, we have considered by modelling various III-nitride SQW and
MQW LED heterostructures operating in both visible and UV spectral ranges.
The comparison of simulations with available data justifies that the DD model
employed in this study could generally serve as an effective tool for the LED
design and optimization.
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